{ "cells": [ { "cell_type": "markdown", "id": "2ff597aa", "metadata": {}, "source": [ "# 8 - Os peixes-bois condicionais" ] }, { "cell_type": "code", "execution_count": 1, "id": "204f83ef", "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "\n", "from scipy import stats\n", "\n", "import matplotlib.pyplot as plt\n", "from matplotlib.gridspec import GridSpec\n", "\n", "import pandas as pd\n", "\n", "import networkx as nx\n", "# from causalgraphicalmodels import CausalGraphicalModel\n", "\n", "import arviz as az\n", "# ArviZ ships with style sheets!\n", "# https://python.arviz.org/en/stable/examples/styles.html#example-styles\n", "az.style.use(\"arviz-darkgrid\")\n", "\n", "import xarray as xr\n", "\n", "import stan\n", "import nest_asyncio\n", "\n", "plt.style.use('default')\n", "plt.rcParams['axes.facecolor'] = 'lightgray'\n", "\n", "# To DAG's\n", "import daft\n", "from causalgraphicalmodels import CausalGraphicalModel" ] }, { "cell_type": "code", "execution_count": 2, "id": "8a824bad", "metadata": {}, "outputs": [], "source": [ "# Add fonts to matplotlib to run xkcd\n", "\n", "from matplotlib import font_manager\n", "\n", "font_dirs = [\"fonts/\"] # The path to the custom font file.\n", "font_files = font_manager.findSystemFonts(fontpaths=font_dirs)\n", "\n", "for font_file in font_files:\n", " font_manager.fontManager.addfont(font_file)" ] }, { "cell_type": "code", "execution_count": 3, "id": "c98a39a3", "metadata": {}, "outputs": [], "source": [ "# plt.xkcd()" ] }, { "cell_type": "code", "execution_count": 4, "id": "9d769e77", "metadata": {}, "outputs": [], "source": [ "# To running the stan in jupyter notebook\n", "nest_asyncio.apply()" ] }, { "cell_type": "markdown", "id": "5fcc96c9", "metadata": {}, "source": [ "### R Code 8.1" ] }, { "cell_type": "code", "execution_count": 5, "id": "fadc80f6", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", " | isocode | \n", "isonum | \n", "country | \n", "rugged | \n", "rugged_popw | \n", "rugged_slope | \n", "rugged_lsd | \n", "rugged_pc | \n", "land_area | \n", "lat | \n", "... | \n", "africa_region_w | \n", "africa_region_e | \n", "africa_region_c | \n", "slave_exports | \n", "dist_slavemkt_atlantic | \n", "dist_slavemkt_indian | \n", "dist_slavemkt_saharan | \n", "dist_slavemkt_redsea | \n", "pop_1400 | \n", "european_descent | \n", "
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | \n", "ABW | \n", "533 | \n", "Aruba | \n", "0.462 | \n", "0.380 | \n", "1.226 | \n", "0.144 | \n", "0.000 | \n", "18.0 | \n", "12.508 | \n", "... | \n", "0 | \n", "0 | \n", "0 | \n", "0.0 | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "614.0 | \n", "NaN | \n", "
1 | \n", "AFG | \n", "4 | \n", "Afghanistan | \n", "2.518 | \n", "1.469 | \n", "7.414 | \n", "0.720 | \n", "39.004 | \n", "65209.0 | \n", "33.833 | \n", "... | \n", "0 | \n", "0 | \n", "0 | \n", "0.0 | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "1870829.0 | \n", "0.0 | \n", "
2 | \n", "AGO | \n", "24 | \n", "Angola | \n", "0.858 | \n", "0.714 | \n", "2.274 | \n", "0.228 | \n", "4.906 | \n", "124670.0 | \n", "-12.299 | \n", "... | \n", "0 | \n", "0 | \n", "1 | \n", "3610000.0 | \n", "5.669 | \n", "6.981 | \n", "4.926 | \n", "3.872 | \n", "1223208.0 | \n", "2.0 | \n", "
3 | \n", "AIA | \n", "660 | \n", "Anguilla | \n", "0.013 | \n", "0.010 | \n", "0.026 | \n", "0.006 | \n", "0.000 | \n", "9.0 | \n", "18.231 | \n", "... | \n", "0 | \n", "0 | \n", "0 | \n", "0.0 | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "
4 | \n", "ALB | \n", "8 | \n", "Albania | \n", "3.427 | \n", "1.597 | \n", "10.451 | \n", "1.006 | \n", "62.133 | \n", "2740.0 | \n", "41.143 | \n", "... | \n", "0 | \n", "0 | \n", "0 | \n", "0.0 | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "200000.0 | \n", "100.0 | \n", "
5 rows × 51 columns
\n", "\n", " | rgdppc_2000 | \n", "log_gdp | \n", "
---|---|---|
0 | \n", "NaN | \n", "NaN | \n", "
1 | \n", "NaN | \n", "NaN | \n", "
2 | \n", "1794.729 | \n", "7.492609 | \n", "
3 | \n", "NaN | \n", "NaN | \n", "
4 | \n", "3703.113 | \n", "8.216929 | \n", "
\n", " | log_gdp_std | \n", "rugged_std | \n", "
---|---|---|
2 | \n", "0.879712 | \n", "0.138342 | \n", "
4 | \n", "0.964755 | \n", "0.552564 | \n", "
7 | \n", "1.166270 | \n", "0.123992 | \n", "
8 | \n", "1.104485 | \n", "0.124960 | \n", "
9 | \n", "0.914904 | \n", "0.433409 | \n", "
... | \n", "... | \n", "... | \n", "
229 | \n", "0.996681 | \n", "0.270397 | \n", "
230 | \n", "0.783032 | \n", "0.374557 | \n", "
231 | \n", "1.074365 | \n", "0.283941 | \n", "
232 | \n", "0.780967 | \n", "0.085940 | \n", "
233 | \n", "0.918589 | \n", "0.192519 | \n", "
170 rows × 2 columns
\n", "parameters | \n", "lp__ | \n", "accept_stat__ | \n", "stepsize__ | \n", "treedepth__ | \n", "n_leapfrog__ | \n", "divergent__ | \n", "energy__ | \n", "alpha | \n", "beta | \n", "sigma | \n", "... | \n", "log_gdp_std_hat.161 | \n", "log_gdp_std_hat.162 | \n", "log_gdp_std_hat.163 | \n", "log_gdp_std_hat.164 | \n", "log_gdp_std_hat.165 | \n", "log_gdp_std_hat.166 | \n", "log_gdp_std_hat.167 | \n", "log_gdp_std_hat.168 | \n", "log_gdp_std_hat.169 | \n", "log_gdp_std_hat.170 | \n", "
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
draws | \n", "\n", " | \n", " | \n", " | \n", " | \n", " | \n", " | \n", " | \n", " | \n", " | \n", " | \n", " | \n", " | \n", " | \n", " | \n", " | \n", " | \n", " | \n", " | \n", " | \n", " | \n", " |
0 | \n", "250.223848 | \n", "1.000000 | \n", "0.783507 | \n", "2.0 | \n", "3.0 | \n", "0.0 | \n", "-248.561315 | \n", "1.004732 | \n", "0.082170 | \n", "0.137878 | \n", "... | \n", "1.118976 | \n", "1.119565 | \n", "0.740072 | \n", "1.142818 | \n", "1.063478 | \n", "0.814552 | \n", "1.065424 | \n", "0.926426 | \n", "1.053791 | \n", "1.037406 | \n", "
1 | \n", "250.098032 | \n", "1.000000 | \n", "0.820753 | \n", "3.0 | \n", "7.0 | \n", "0.0 | \n", "-249.604298 | \n", "0.997929 | \n", "-0.054581 | \n", "0.128852 | \n", "... | \n", "1.191371 | \n", "1.000939 | \n", "0.896899 | \n", "0.941724 | \n", "0.966914 | \n", "1.054525 | \n", "0.813120 | \n", "0.728859 | \n", "1.209415 | \n", "1.016214 | \n", "
2 | \n", "250.407073 | \n", "1.000000 | \n", "0.701591 | \n", "2.0 | \n", "3.0 | \n", "0.0 | \n", "-248.170058 | \n", "1.011967 | \n", "0.013175 | \n", "0.143171 | \n", "... | \n", "1.164594 | \n", "1.138025 | \n", "1.067104 | \n", "0.911622 | \n", "0.865265 | \n", "1.124657 | \n", "0.931247 | \n", "0.905352 | \n", "1.012228 | \n", "1.088270 | \n", "
3 | \n", "249.859962 | \n", "0.868779 | \n", "0.773159 | \n", "2.0 | \n", "3.0 | \n", "0.0 | \n", "-249.776934 | \n", "0.990636 | \n", "0.011701 | \n", "0.148956 | \n", "... | \n", "1.026118 | \n", "1.070148 | \n", "1.096556 | \n", "0.929882 | \n", "0.962394 | \n", "0.976640 | \n", "0.939865 | \n", "0.784410 | \n", "0.861957 | \n", "1.069466 | \n", "
4 | \n", "250.238049 | \n", "0.955552 | \n", "0.783507 | \n", "3.0 | \n", "7.0 | \n", "0.0 | \n", "-248.995941 | \n", "0.999829 | \n", "-0.081176 | \n", "0.138578 | \n", "... | \n", "1.019760 | \n", "1.268163 | \n", "0.770706 | \n", "0.923456 | \n", "0.936988 | \n", "1.147374 | \n", "0.666895 | \n", "0.867448 | \n", "1.243216 | \n", "1.132200 | \n", "
5 rows × 520 columns
\n", "<xarray.Dataset>\n", "Dimensions: (chain: 4, draw: 1000, mu_dim_0: 170)\n", "Coordinates:\n", " * chain (chain) int64 0 1 2 3\n", " * draw (draw) int64 0 1 2 3 4 5 6 7 8 ... 992 993 994 995 996 997 998 999\n", " * mu_dim_0 (mu_dim_0) int64 0 1 2 3 4 5 6 7 ... 163 164 165 166 167 168 169\n", "Data variables:\n", " alpha (chain, draw) float64 1.005 0.9998 0.9991 ... 0.9894 0.9894 1.002\n", " beta (chain, draw) float64 0.08217 -0.08118 ... -0.09797 0.09237\n", " sigma (chain, draw) float64 0.1379 0.1386 0.1325 ... 0.1491 0.1545 0.129\n", " mu (chain, draw, mu_dim_0) float64 0.9984 1.032 0.9973 ... 0.9904 1.0\n", "Attributes:\n", " created_at: 2023-08-11T18:56:20.275185\n", " arviz_version: 0.15.1\n", " inference_library: stan\n", " inference_library_version: 3.7.0\n", " num_chains: 4\n", " num_samples: 1000\n", " num_thin: 1\n", " num_warmup: 1000\n", " save_warmup: 0\n", " model_name: models/ujreyjxj\n", " program_code: \\n data {\\n int N;\\n vector[...\n", " random_seed: None
<xarray.Dataset>\n", "Dimensions: (chain: 4, draw: 1000, log_gdp_std_hat_dim_0: 170)\n", "Coordinates:\n", " * chain (chain) int64 0 1 2 3\n", " * draw (draw) int64 0 1 2 3 4 5 ... 994 995 996 997 998 999\n", " * log_gdp_std_hat_dim_0 (log_gdp_std_hat_dim_0) int64 0 1 2 3 ... 167 168 169\n", "Data variables:\n", " log_gdp_std_hat (chain, draw, log_gdp_std_hat_dim_0) float64 1.064...\n", "Attributes:\n", " created_at: 2023-08-11T18:56:20.443669\n", " arviz_version: 0.15.1\n", " inference_library: stan\n", " inference_library_version: 3.7.0
<xarray.Dataset>\n", "Dimensions: (chain: 4, draw: 1000, log_lik_dim_0: 170)\n", "Coordinates:\n", " * chain (chain) int64 0 1 2 3\n", " * draw (draw) int64 0 1 2 3 4 5 6 7 ... 993 994 995 996 997 998 999\n", " * log_lik_dim_0 (log_lik_dim_0) int64 0 1 2 3 4 5 ... 164 165 166 167 168 169\n", "Data variables:\n", " log_lik (chain, draw, log_lik_dim_0) float64 0.6917 0.9418 ... 0.9285\n", "Attributes:\n", " created_at: 2023-08-11T18:56:20.382809\n", " arviz_version: 0.15.1\n", " inference_library: stan\n", " inference_library_version: 3.7.0
<xarray.Dataset>\n", "Dimensions: (chain: 4, draw: 1000)\n", "Coordinates:\n", " * chain (chain) int64 0 1 2 3\n", " * draw (draw) int64 0 1 2 3 4 5 6 ... 993 994 995 996 997 998 999\n", "Data variables:\n", " acceptance_rate (chain, draw) float64 1.0 0.9556 0.9863 ... 0.8224 0.8556\n", " step_size (chain, draw) float64 0.7835 0.7835 ... 0.7732 0.7732\n", " tree_depth (chain, draw) int64 2 3 2 2 2 2 3 2 2 ... 1 2 2 2 2 2 2 2 3\n", " n_steps (chain, draw) int64 3 7 7 3 3 3 7 3 3 ... 3 3 3 3 3 3 3 3 7\n", " diverging (chain, draw) bool False False False ... False False False\n", " energy (chain, draw) float64 -248.6 -249.0 ... -246.1 -243.7\n", " lp (chain, draw) float64 250.2 250.2 249.9 ... 247.4 249.2\n", "Attributes:\n", " created_at: 2023-08-11T18:56:20.326585\n", " arviz_version: 0.15.1\n", " inference_library: stan\n", " inference_library_version: 3.7.0\n", " num_chains: 4\n", " num_samples: 1000\n", " num_thin: 1\n", " num_warmup: 1000\n", " save_warmup: 0\n", " model_name: models/ujreyjxj\n", " program_code: \\n data {\\n int N;\\n vector[...\n", " random_seed: None
<xarray.Dataset>\n", "Dimensions: (chain: 4, draw: 1000, mu_dim_0: 170,\n", " log_lik_dim_0: 170, log_gdp_std_hat_dim_0: 170)\n", "Coordinates:\n", " * chain (chain) int64 0 1 2 3\n", " * draw (draw) int64 0 1 2 3 4 5 ... 994 995 996 997 998 999\n", " * mu_dim_0 (mu_dim_0) int64 0 1 2 3 4 5 ... 165 166 167 168 169\n", " * log_lik_dim_0 (log_lik_dim_0) int64 0 1 2 3 4 ... 166 167 168 169\n", " * log_gdp_std_hat_dim_0 (log_gdp_std_hat_dim_0) int64 0 1 2 3 ... 167 168 169\n", "Data variables:\n", " alpha (chain, draw) float64 1.005 0.9998 ... 0.9894 1.002\n", " beta (chain, draw) float64 0.08217 -0.08118 ... 0.09237\n", " sigma (chain, draw) float64 0.1379 0.1386 ... 0.1545 0.129\n", " mu (chain, draw, mu_dim_0) float64 0.9984 1.032 ... 1.0\n", " log_lik (chain, draw, log_lik_dim_0) float64 0.6917 ... 0....\n", " log_gdp_std_hat (chain, draw, log_gdp_std_hat_dim_0) float64 1.064...\n", "Attributes:\n", " created_at: 2023-08-11T18:56:20.500663\n", " arviz_version: 0.15.1\n", " inference_library: stan\n", " inference_library_version: 3.7.0\n", " num_chains: 4\n", " num_samples: 1000\n", " num_thin: 1\n", " num_warmup: 1000\n", " save_warmup: 0\n", " model_name: models/ujreyjxj\n", " program_code: \\n data {\\n int N;\\n vector[...\n", " random_seed: None
<xarray.Dataset>\n", "Dimensions: (chain: 4, draw: 1000)\n", "Coordinates:\n", " * chain (chain) int64 0 1 2 3\n", " * draw (draw) int64 0 1 2 3 4 5 6 ... 993 994 995 996 997 998 999\n", "Data variables:\n", " lp (chain, draw) float64 250.2 250.2 249.9 ... 247.4 249.2\n", " acceptance_rate (chain, draw) float64 1.0 0.9556 0.9863 ... 0.8224 0.8556\n", " step_size (chain, draw) float64 0.7835 0.7835 ... 0.7732 0.7732\n", " tree_depth (chain, draw) int64 2 3 2 2 2 2 3 2 2 ... 1 2 2 2 2 2 2 2 3\n", " n_steps (chain, draw) int64 3 7 7 3 3 3 7 3 3 ... 3 3 3 3 3 3 3 3 7\n", " diverging (chain, draw) bool False False False ... False False False\n", " energy (chain, draw) float64 -248.6 -249.0 ... -246.1 -243.7\n", "Attributes:\n", " created_at: 2023-08-11T18:56:20.652569\n", " arviz_version: 0.15.1\n", " inference_library: stan\n", " inference_library_version: 3.7.0\n", " num_chains: 4\n", " num_samples: 1000\n", " num_thin: 1\n", " num_warmup: 1000\n", " save_warmup: 0\n", " model_name: models/ujreyjxj\n", " program_code: \\n data {\\n int N;\\n vector[...\n", " random_seed: None
<xarray.Dataset>\n", "Dimensions: (log_gdp_std_dim_0: 170)\n", "Coordinates:\n", " * log_gdp_std_dim_0 (log_gdp_std_dim_0) int64 0 1 2 3 4 ... 166 167 168 169\n", "Data variables:\n", " log_gdp_std (log_gdp_std_dim_0) float64 0.8797 0.9648 ... 0.9186\n", "Attributes:\n", " created_at: 2023-08-11T18:56:20.241424\n", " arviz_version: 0.15.1\n", " inference_library: stan\n", " inference_library_version: 3.7.0
\n", " | mean | \n", "sd | \n", "hdi_3% | \n", "hdi_97% | \n", "mcse_mean | \n", "mcse_sd | \n", "ess_bulk | \n", "ess_tail | \n", "r_hat | \n", "
---|---|---|---|---|---|---|---|---|---|
alpha | \n", "1.000 | \n", "0.011 | \n", "0.977 | \n", "1.018 | \n", "0.000 | \n", "0.000 | \n", "4235.0 | \n", "2967.0 | \n", "1.0 | \n", "
beta | \n", "0.004 | \n", "0.056 | \n", "-0.101 | \n", "0.106 | \n", "0.001 | \n", "0.001 | \n", "3764.0 | \n", "3240.0 | \n", "1.0 | \n", "
sigma | \n", "0.138 | \n", "0.008 | \n", "0.125 | \n", "0.152 | \n", "0.000 | \n", "0.000 | \n", "3197.0 | \n", "2737.0 | \n", "1.0 | \n", "
\n", " | mean | \n", "sd | \n", "hdi_3% | \n", "hdi_97% | \n", "mcse_mean | \n", "mcse_sd | \n", "ess_bulk | \n", "ess_tail | \n", "r_hat | \n", "
---|---|---|---|---|---|---|---|---|---|
alpha | \n", "1.000 | \n", "0.011 | \n", "0.977 | \n", "1.018 | \n", "0.000 | \n", "0.000 | \n", "4235.0 | \n", "2967.0 | \n", "1.0 | \n", "
beta | \n", "0.004 | \n", "0.056 | \n", "-0.101 | \n", "0.106 | \n", "0.001 | \n", "0.001 | \n", "3764.0 | \n", "3240.0 | \n", "1.0 | \n", "
sigma | \n", "0.138 | \n", "0.008 | \n", "0.125 | \n", "0.152 | \n", "0.000 | \n", "0.000 | \n", "3197.0 | \n", "2737.0 | \n", "1.0 | \n", "
\n", " | cont_africa | \n", "cid | \n", "
---|---|---|
2 | \n", "1 | \n", "1 | \n", "
4 | \n", "0 | \n", "2 | \n", "
7 | \n", "0 | \n", "2 | \n", "
8 | \n", "0 | \n", "2 | \n", "
9 | \n", "0 | \n", "2 | \n", "
\n", " | rank | \n", "elpd_waic | \n", "p_waic | \n", "elpd_diff | \n", "weight | \n", "se | \n", "dse | \n", "warning | \n", "scale | \n", "
---|---|---|---|---|---|---|---|---|---|
m8.2 | \n", "0 | \n", "126.166124 | \n", "4.117261 | \n", "0.000000 | \n", "0.969256 | \n", "7.396644 | \n", "0.000000 | \n", "True | \n", "log | \n", "
m8.1 | \n", "1 | \n", "94.499399 | \n", "2.491680 | \n", "31.666725 | \n", "0.030744 | \n", "6.463956 | \n", "7.317875 | \n", "False | \n", "log | \n", "
\n", " | mean | \n", "sd | \n", "hdi_3% | \n", "hdi_97% | \n", "mcse_mean | \n", "mcse_sd | \n", "ess_bulk | \n", "ess_tail | \n", "r_hat | \n", "
---|---|---|---|---|---|---|---|---|---|
alpha[0] | \n", "0.880 | \n", "0.016 | \n", "0.851 | \n", "0.911 | \n", "0.000 | \n", "0.000 | \n", "4512.0 | \n", "3483.0 | \n", "1.0 | \n", "
alpha[1] | \n", "1.049 | \n", "0.010 | \n", "1.031 | \n", "1.069 | \n", "0.000 | \n", "0.000 | \n", "4305.0 | \n", "2642.0 | \n", "1.0 | \n", "
beta | \n", "-0.046 | \n", "0.047 | \n", "-0.130 | \n", "0.048 | \n", "0.001 | \n", "0.001 | \n", "3508.0 | \n", "2517.0 | \n", "1.0 | \n", "
sigma | \n", "0.114 | \n", "0.006 | \n", "0.103 | \n", "0.126 | \n", "0.000 | \n", "0.000 | \n", "3742.0 | \n", "3076.0 | \n", "1.0 | \n", "
<xarray.Dataset>\n", "Dimensions: (chain: 4, draw: 1000, africa: 2, mu_dim_0: 170)\n", "Coordinates:\n", " * chain (chain) int64 0 1 2 3\n", " * draw (draw) int64 0 1 2 3 4 5 6 7 8 ... 992 993 994 995 996 997 998 999\n", " * africa (africa) int64 0 1\n", " * mu_dim_0 (mu_dim_0) int64 0 1 2 3 4 5 6 7 ... 163 164 165 166 167 168 169\n", "Data variables:\n", " alpha (chain, draw, africa) float64 0.8731 1.052 0.8843 ... 0.8777 1.072\n", " beta (chain, draw) float64 -0.04755 -0.02791 ... -0.07995 0.03227\n", " sigma (chain, draw) float64 0.1152 0.1109 0.11 ... 0.1056 0.1162 0.1162\n", " mu (chain, draw, mu_dim_0) float64 0.8768 1.036 ... 0.8736 0.877\n", "Attributes:\n", " created_at: 2023-08-11T18:56:27.122181\n", " arviz_version: 0.15.1\n", " inference_library: stan\n", " inference_library_version: 3.7.0\n", " num_chains: 4\n", " num_samples: 1000\n", " num_thin: 1\n", " num_warmup: 1000\n", " save_warmup: 0\n", " model_name: models/22jq2cue\n", " program_code: \\n data {\\n int N;\\n vector[...\n", " random_seed: None
<xarray.Dataset>\n", "Dimensions: (chain: 4, draw: 1000, log_gdp_std_hat_dim_0: 170)\n", "Coordinates:\n", " * chain (chain) int64 0 1 2 3\n", " * draw (draw) int64 0 1 2 3 4 5 ... 994 995 996 997 998 999\n", " * log_gdp_std_hat_dim_0 (log_gdp_std_hat_dim_0) int64 0 1 2 3 ... 167 168 169\n", "Data variables:\n", " log_gdp_std_hat (chain, draw, log_gdp_std_hat_dim_0) float64 0.746...\n", "Attributes:\n", " created_at: 2023-08-11T18:56:27.276036\n", " arviz_version: 0.15.1\n", " inference_library: stan\n", " inference_library_version: 3.7.0
<xarray.Dataset>\n", "Dimensions: (chain: 4, draw: 1000, log_lik_dim_0: 170)\n", "Coordinates:\n", " * chain (chain) int64 0 1 2 3\n", " * draw (draw) int64 0 1 2 3 4 5 6 7 ... 993 994 995 996 997 998 999\n", " * log_lik_dim_0 (log_lik_dim_0) int64 0 1 2 3 4 5 ... 164 165 166 167 168 169\n", "Data variables:\n", " log_lik (chain, draw, log_lik_dim_0) float64 1.242 1.051 ... 1.169\n", "Attributes:\n", " created_at: 2023-08-11T18:56:27.225035\n", " arviz_version: 0.15.1\n", " inference_library: stan\n", " inference_library_version: 3.7.0
<xarray.Dataset>\n", "Dimensions: (chain: 4, draw: 1000)\n", "Coordinates:\n", " * chain (chain) int64 0 1 2 3\n", " * draw (draw) int64 0 1 2 3 4 5 6 ... 993 994 995 996 997 998 999\n", "Data variables:\n", " acceptance_rate (chain, draw) float64 0.9829 0.9857 0.9661 ... 0.7619 1.0\n", " step_size (chain, draw) float64 0.7249 0.7249 ... 0.7518 0.7518\n", " tree_depth (chain, draw) int64 3 3 2 2 3 2 3 2 3 ... 3 2 3 2 3 3 3 3 3\n", " n_steps (chain, draw) int64 7 7 3 7 7 3 7 3 7 ... 7 3 7 3 7 7 7 7 7\n", " diverging (chain, draw) bool False False False ... False False False\n", " energy (chain, draw) float64 -281.1 -282.8 ... -274.9 -275.5\n", " lp (chain, draw) float64 283.2 283.2 282.8 ... 278.0 279.2\n", "Attributes:\n", " created_at: 2023-08-11T18:56:27.172412\n", " arviz_version: 0.15.1\n", " inference_library: stan\n", " inference_library_version: 3.7.0\n", " num_chains: 4\n", " num_samples: 1000\n", " num_thin: 1\n", " num_warmup: 1000\n", " save_warmup: 0\n", " model_name: models/22jq2cue\n", " program_code: \\n data {\\n int N;\\n vector[...\n", " random_seed: None
<xarray.Dataset>\n", "Dimensions: (chain: 4, draw: 1000, africa: 2, mu_dim_0: 170,\n", " log_lik_dim_0: 170, log_gdp_std_hat_dim_0: 170)\n", "Coordinates:\n", " * chain (chain) int64 0 1 2 3\n", " * draw (draw) int64 0 1 2 3 4 5 ... 994 995 996 997 998 999\n", " * africa (africa) int64 0 1\n", " * mu_dim_0 (mu_dim_0) int64 0 1 2 3 4 5 ... 165 166 167 168 169\n", " * log_lik_dim_0 (log_lik_dim_0) int64 0 1 2 3 4 ... 166 167 168 169\n", " * log_gdp_std_hat_dim_0 (log_gdp_std_hat_dim_0) int64 0 1 2 3 ... 167 168 169\n", "Data variables:\n", " alpha (chain, draw, africa) float64 0.8731 1.052 ... 1.072\n", " beta (chain, draw) float64 -0.04755 -0.02791 ... 0.03227\n", " sigma (chain, draw) float64 0.1152 0.1109 ... 0.1162 0.1162\n", " mu (chain, draw, mu_dim_0) float64 0.8768 ... 0.877\n", " log_lik (chain, draw, log_lik_dim_0) float64 1.242 ... 1.169\n", " log_gdp_std_hat (chain, draw, log_gdp_std_hat_dim_0) float64 0.746...\n", "Attributes:\n", " created_at: 2023-08-11T18:56:27.342979\n", " arviz_version: 0.15.1\n", " inference_library: stan\n", " inference_library_version: 3.7.0\n", " num_chains: 4\n", " num_samples: 1000\n", " num_thin: 1\n", " num_warmup: 1000\n", " save_warmup: 0\n", " model_name: models/22jq2cue\n", " program_code: \\n data {\\n int N;\\n vector[...\n", " random_seed: None
<xarray.Dataset>\n", "Dimensions: (chain: 4, draw: 1000)\n", "Coordinates:\n", " * chain (chain) int64 0 1 2 3\n", " * draw (draw) int64 0 1 2 3 4 5 6 ... 993 994 995 996 997 998 999\n", "Data variables:\n", " lp (chain, draw) float64 283.2 283.2 282.8 ... 278.0 279.2\n", " acceptance_rate (chain, draw) float64 0.9829 0.9857 0.9661 ... 0.7619 1.0\n", " step_size (chain, draw) float64 0.7249 0.7249 ... 0.7518 0.7518\n", " tree_depth (chain, draw) int64 3 3 2 2 3 2 3 2 3 ... 3 2 3 2 3 3 3 3 3\n", " n_steps (chain, draw) int64 7 7 3 7 7 3 7 3 7 ... 7 3 7 3 7 7 7 7 7\n", " diverging (chain, draw) bool False False False ... False False False\n", " energy (chain, draw) float64 -281.1 -282.8 ... -274.9 -275.5\n", "Attributes:\n", " created_at: 2023-08-11T18:56:27.392039\n", " arviz_version: 0.15.1\n", " inference_library: stan\n", " inference_library_version: 3.7.0\n", " num_chains: 4\n", " num_samples: 1000\n", " num_thin: 1\n", " num_warmup: 1000\n", " save_warmup: 0\n", " model_name: models/22jq2cue\n", " program_code: \\n data {\\n int N;\\n vector[...\n", " random_seed: None
<xarray.Dataset>\n", "Dimensions: (log_gdp_std_dim_0: 170)\n", "Coordinates:\n", " * log_gdp_std_dim_0 (log_gdp_std_dim_0) int64 0 1 2 3 4 ... 166 167 168 169\n", "Data variables:\n", " log_gdp_std (log_gdp_std_dim_0) float64 0.8797 0.9648 ... 0.9186\n", "Attributes:\n", " created_at: 2023-08-11T18:56:27.082048\n", " arviz_version: 0.15.1\n", " inference_library: stan\n", " inference_library_version: 3.7.0
\n", " | mean | \n", "sd | \n", "hdi_3% | \n", "hdi_97% | \n", "mcse_mean | \n", "mcse_sd | \n", "ess_bulk | \n", "ess_tail | \n", "r_hat | \n", "
---|---|---|---|---|---|---|---|---|---|
alpha[0] | \n", "0.887 | \n", "0.016 | \n", "0.858 | \n", "0.916 | \n", "0.000 | \n", "0.000 | \n", "5156.0 | \n", "2914.0 | \n", "1.0 | \n", "
alpha[1] | \n", "1.051 | \n", "0.010 | \n", "1.033 | \n", "1.071 | \n", "0.000 | \n", "0.000 | \n", "5063.0 | \n", "3095.0 | \n", "1.0 | \n", "
beta[0] | \n", "0.131 | \n", "0.075 | \n", "-0.006 | \n", "0.270 | \n", "0.001 | \n", "0.001 | \n", "4710.0 | \n", "3386.0 | \n", "1.0 | \n", "
beta[1] | \n", "-0.143 | \n", "0.056 | \n", "-0.247 | \n", "-0.036 | \n", "0.001 | \n", "0.001 | \n", "4727.0 | \n", "3117.0 | \n", "1.0 | \n", "
sigma | \n", "0.112 | \n", "0.006 | \n", "0.100 | \n", "0.123 | \n", "0.000 | \n", "0.000 | \n", "5069.0 | \n", "3262.0 | \n", "1.0 | \n", "
\n", " | rank | \n", "elpd_loo | \n", "p_loo | \n", "elpd_diff | \n", "weight | \n", "se | \n", "dse | \n", "warning | \n", "scale | \n", "
---|---|---|---|---|---|---|---|---|---|
m8.3 | \n", "0 | \n", "129.589277 | \n", "4.989499 | \n", "0.000000 | \n", "0.870793 | \n", "7.309693 | \n", "0.000000 | \n", "False | \n", "log | \n", "
m8.2 | \n", "1 | \n", "126.137495 | \n", "4.145890 | \n", "3.451783 | \n", "0.129207 | \n", "7.405339 | \n", "3.225278 | \n", "False | \n", "log | \n", "
m8.1 | \n", "2 | \n", "94.492463 | \n", "2.498616 | \n", "35.096814 | \n", "0.000000 | \n", "6.464447 | \n", "7.448111 | \n", "False | \n", "log | \n", "
<xarray.Dataset>\n", "Dimensions: (chain: 4, draw: 1000, africa: 2, mu_dim_0: 170)\n", "Coordinates:\n", " * chain (chain) int64 0 1 2 3\n", " * draw (draw) int64 0 1 2 3 4 5 6 7 8 ... 992 993 994 995 996 997 998 999\n", " * africa (africa) int64 0 1\n", " * mu_dim_0 (mu_dim_0) int64 0 1 2 3 4 5 6 7 ... 163 164 165 166 167 168 169\n", "Data variables:\n", " alpha (chain, draw, africa) float64 0.88 1.051 0.8771 ... 0.876 1.022\n", " beta (chain, draw, africa) float64 0.2193 -0.1387 ... 0.1464 -0.1622\n", " sigma (chain, draw) float64 0.1212 0.131 0.1102 ... 0.1118 0.1209 0.1094\n", " mu (chain, draw, mu_dim_0) float64 0.8632 1.004 ... 0.8572 0.8728\n", "Attributes:\n", " created_at: 2023-08-11T18:56:30.413832\n", " arviz_version: 0.15.1\n", " inference_library: stan\n", " inference_library_version: 3.7.0\n", " num_chains: 4\n", " num_samples: 1000\n", " num_thin: 1\n", " num_warmup: 1000\n", " save_warmup: 0\n", " model_name: models/5jmion4o\n", " program_code: \\n data {\\n int N;\\n vector[...\n", " random_seed: None
<xarray.Dataset>\n", "Dimensions: (chain: 4, draw: 1000, log_gdp_std_hat_dim_0: 170)\n", "Coordinates:\n", " * chain (chain) int64 0 1 2 3\n", " * draw (draw) int64 0 1 2 3 4 5 ... 994 995 996 997 998 999\n", " * log_gdp_std_hat_dim_0 (log_gdp_std_hat_dim_0) int64 0 1 2 3 ... 167 168 169\n", "Data variables:\n", " log_gdp_std_hat (chain, draw, log_gdp_std_hat_dim_0) float64 0.913...\n", "Attributes:\n", " created_at: 2023-08-11T18:56:30.571354\n", " arviz_version: 0.15.1\n", " inference_library: stan\n", " inference_library_version: 3.7.0
<xarray.Dataset>\n", "Dimensions: (chain: 4, draw: 1000, log_lik_dim_0: 170)\n", "Coordinates:\n", " * chain (chain) int64 0 1 2 3\n", " * draw (draw) int64 0 1 2 3 4 5 6 7 ... 993 994 995 996 997 998 999\n", " * log_lik_dim_0 (log_lik_dim_0) int64 0 1 2 3 4 5 ... 164 165 166 167 168 169\n", "Data variables:\n", " log_lik (chain, draw, log_lik_dim_0) float64 1.182 1.139 ... 1.206\n", "Attributes:\n", " created_at: 2023-08-11T18:56:30.520437\n", " arviz_version: 0.15.1\n", " inference_library: stan\n", " inference_library_version: 3.7.0
<xarray.Dataset>\n", "Dimensions: (chain: 4, draw: 1000)\n", "Coordinates:\n", " * chain (chain) int64 0 1 2 3\n", " * draw (draw) int64 0 1 2 3 4 5 6 ... 993 994 995 996 997 998 999\n", "Data variables:\n", " acceptance_rate (chain, draw) float64 0.9562 0.7774 ... 0.9232 0.8468\n", " step_size (chain, draw) float64 0.7482 0.7482 ... 0.6294 0.6294\n", " tree_depth (chain, draw) int64 2 3 3 3 2 3 3 3 2 ... 3 3 2 3 3 3 3 2 3\n", " n_steps (chain, draw) int64 3 7 7 7 3 7 7 7 3 ... 7 7 7 7 7 7 7 7 7\n", " diverging (chain, draw) bool False False False ... False False False\n", " energy (chain, draw) float64 -280.2 -279.4 ... -284.5 -279.4\n", " lp (chain, draw) float64 285.4 280.7 282.5 ... 285.7 283.1\n", "Attributes:\n", " created_at: 2023-08-11T18:56:30.463167\n", " arviz_version: 0.15.1\n", " inference_library: stan\n", " inference_library_version: 3.7.0\n", " num_chains: 4\n", " num_samples: 1000\n", " num_thin: 1\n", " num_warmup: 1000\n", " save_warmup: 0\n", " model_name: models/5jmion4o\n", " program_code: \\n data {\\n int N;\\n vector[...\n", " random_seed: None
<xarray.Dataset>\n", "Dimensions: (chain: 4, draw: 1000, africa: 2, mu_dim_0: 170,\n", " log_lik_dim_0: 170, log_gdp_std_hat_dim_0: 170)\n", "Coordinates:\n", " * chain (chain) int64 0 1 2 3\n", " * draw (draw) int64 0 1 2 3 4 5 ... 994 995 996 997 998 999\n", " * africa (africa) int64 0 1\n", " * mu_dim_0 (mu_dim_0) int64 0 1 2 3 4 5 ... 165 166 167 168 169\n", " * log_lik_dim_0 (log_lik_dim_0) int64 0 1 2 3 4 ... 166 167 168 169\n", " * log_gdp_std_hat_dim_0 (log_gdp_std_hat_dim_0) int64 0 1 2 3 ... 167 168 169\n", "Data variables:\n", " alpha (chain, draw, africa) float64 0.88 1.051 ... 1.022\n", " beta (chain, draw, africa) float64 0.2193 ... -0.1622\n", " sigma (chain, draw) float64 0.1212 0.131 ... 0.1209 0.1094\n", " mu (chain, draw, mu_dim_0) float64 0.8632 ... 0.8728\n", " log_lik (chain, draw, log_lik_dim_0) float64 1.182 ... 1.206\n", " log_gdp_std_hat (chain, draw, log_gdp_std_hat_dim_0) float64 0.913...\n", "Attributes:\n", " created_at: 2023-08-11T18:56:30.647322\n", " arviz_version: 0.15.1\n", " inference_library: stan\n", " inference_library_version: 3.7.0\n", " num_chains: 4\n", " num_samples: 1000\n", " num_thin: 1\n", " num_warmup: 1000\n", " save_warmup: 0\n", " model_name: models/5jmion4o\n", " program_code: \\n data {\\n int N;\\n vector[...\n", " random_seed: None
<xarray.Dataset>\n", "Dimensions: (chain: 4, draw: 1000)\n", "Coordinates:\n", " * chain (chain) int64 0 1 2 3\n", " * draw (draw) int64 0 1 2 3 4 5 6 ... 993 994 995 996 997 998 999\n", "Data variables:\n", " lp (chain, draw) float64 285.4 280.7 282.5 ... 285.7 283.1\n", " acceptance_rate (chain, draw) float64 0.9562 0.7774 ... 0.9232 0.8468\n", " step_size (chain, draw) float64 0.7482 0.7482 ... 0.6294 0.6294\n", " tree_depth (chain, draw) int64 2 3 3 3 2 3 3 3 2 ... 3 3 2 3 3 3 3 2 3\n", " n_steps (chain, draw) int64 3 7 7 7 3 7 7 7 3 ... 7 7 7 7 7 7 7 7 7\n", " diverging (chain, draw) bool False False False ... False False False\n", " energy (chain, draw) float64 -280.2 -279.4 ... -284.5 -279.4\n", "Attributes:\n", " created_at: 2023-08-11T18:56:30.696630\n", " arviz_version: 0.15.1\n", " inference_library: stan\n", " inference_library_version: 3.7.0\n", " num_chains: 4\n", " num_samples: 1000\n", " num_thin: 1\n", " num_warmup: 1000\n", " save_warmup: 0\n", " model_name: models/5jmion4o\n", " program_code: \\n data {\\n int N;\\n vector[...\n", " random_seed: None
<xarray.Dataset>\n", "Dimensions: (log_gdp_std_dim_0: 170)\n", "Coordinates:\n", " * log_gdp_std_dim_0 (log_gdp_std_dim_0) int64 0 1 2 3 4 ... 166 167 168 169\n", "Data variables:\n", " log_gdp_std (log_gdp_std_dim_0) float64 0.8797 0.9648 ... 0.9186\n", "Attributes:\n", " created_at: 2023-08-11T18:56:30.365835\n", " arviz_version: 0.15.1\n", " inference_library: stan\n", " inference_library_version: 3.7.0
\n", " | bed | \n", "water | \n", "shade | \n", "blooms | \n", "
---|---|---|---|---|
22 | \n", "c | \n", "2.0 | \n", "2.0 | \n", "135.92 | \n", "
23 | \n", "c | \n", "2.0 | \n", "3.0 | \n", "90.66 | \n", "
24 | \n", "c | \n", "3.0 | \n", "1.0 | \n", "304.52 | \n", "
25 | \n", "c | \n", "3.0 | \n", "2.0 | \n", "249.33 | \n", "
26 | \n", "c | \n", "3.0 | \n", "3.0 | \n", "134.59 | \n", "
\n", " | bed | \n", "
---|---|
count | \n", "27 | \n", "
unique | \n", "3 | \n", "
top | \n", "a | \n", "
freq | \n", "9 | \n", "
\n", " | count | \n", "mean | \n", "std | \n", "min | \n", "25% | \n", "50% | \n", "75% | \n", "max | \n", "
---|---|---|---|---|---|---|---|---|
water | \n", "27.0 | \n", "2.000000 | \n", "0.832050 | \n", "1.0 | \n", "1.000 | \n", "2.00 | \n", "3.0 | \n", "3.00 | \n", "
shade | \n", "27.0 | \n", "2.000000 | \n", "0.832050 | \n", "1.0 | \n", "1.000 | \n", "2.00 | \n", "3.0 | \n", "3.00 | \n", "
blooms | \n", "27.0 | \n", "128.993704 | \n", "92.683923 | \n", "0.0 | \n", "71.115 | \n", "111.04 | \n", "190.3 | \n", "361.66 | \n", "
<xarray.Dataset>\n", "Dimensions: (chain: 4, draw: 1000, mu_dim_0: 27)\n", "Coordinates:\n", " * chain (chain) int64 0 1 2 3\n", " * draw (draw) int64 0 1 2 3 4 5 6 7 8 ... 992 993 994 995 996 997 998 999\n", " * mu_dim_0 (mu_dim_0) int64 0 1 2 3 4 5 6 7 8 ... 18 19 20 21 22 23 24 25 26\n", "Data variables:\n", " alpha (chain, draw) float64 0.3615 0.3282 0.3282 ... 0.3661 0.3922 0.34\n", " beta_w (chain, draw) float64 0.2235 0.2231 0.2231 ... 0.2044 0.2055\n", " beta_s (chain, draw) float64 -0.08126 -0.07431 ... -0.1841 -0.04058\n", " sigma (chain, draw) float64 0.1818 0.1567 0.1567 ... 0.1719 0.1567\n", " mu (chain, draw, mu_dim_0) float64 0.2193 0.1381 ... 0.5455 0.505\n", "Attributes:\n", " created_at: 2023-08-11T18:56:33.510826\n", " arviz_version: 0.15.1\n", " inference_library: stan\n", " inference_library_version: 3.7.0\n", " num_chains: 4\n", " num_samples: 1000\n", " num_thin: 1\n", " num_warmup: 1000\n", " save_warmup: 0\n", " model_name: models/elkgjo5c\n", " program_code: \\n data {\\n int N;\\n vector[...\n", " random_seed: None
<xarray.Dataset>\n", "Dimensions: (chain: 4, draw: 1000, blooms_std_hat_dim_0: 27)\n", "Coordinates:\n", " * chain (chain) int64 0 1 2 3\n", " * draw (draw) int64 0 1 2 3 4 5 6 ... 994 995 996 997 998 999\n", " * blooms_std_hat_dim_0 (blooms_std_hat_dim_0) int64 0 1 2 3 4 ... 23 24 25 26\n", "Data variables:\n", " blooms_std_hat (chain, draw, blooms_std_hat_dim_0) float64 0.1343 ...\n", "Attributes:\n", " created_at: 2023-08-11T18:56:33.654050\n", " arviz_version: 0.15.1\n", " inference_library: stan\n", " inference_library_version: 3.7.0
<xarray.Dataset>\n", "Dimensions: (chain: 4, draw: 1000, log_lik_dim_0: 27)\n", "Coordinates:\n", " * chain (chain) int64 0 1 2 3\n", " * draw (draw) int64 0 1 2 3 4 5 6 7 ... 993 994 995 996 997 998 999\n", " * log_lik_dim_0 (log_lik_dim_0) int64 0 1 2 3 4 5 6 ... 20 21 22 23 24 25 26\n", "Data variables:\n", " log_lik (chain, draw, log_lik_dim_0) float64 0.05831 ... 0.5753\n", "Attributes:\n", " created_at: 2023-08-11T18:56:33.609401\n", " arviz_version: 0.15.1\n", " inference_library: stan\n", " inference_library_version: 3.7.0
<xarray.Dataset>\n", "Dimensions: (chain: 4, draw: 1000)\n", "Coordinates:\n", " * chain (chain) int64 0 1 2 3\n", " * draw (draw) int64 0 1 2 3 4 5 6 ... 993 994 995 996 997 998 999\n", "Data variables:\n", " acceptance_rate (chain, draw) float64 0.9282 0.9287 ... 0.8313 0.9974\n", " step_size (chain, draw) float64 0.804 0.804 0.804 ... 0.6157 0.6157\n", " tree_depth (chain, draw) int64 2 2 2 3 2 1 3 3 2 ... 2 2 3 3 2 2 3 3 3\n", " n_steps (chain, draw) int64 3 3 3 7 3 3 7 7 3 ... 7 7 7 7 3 7 7 7 7\n", " diverging (chain, draw) bool False False False ... False False False\n", " energy (chain, draw) float64 -32.69 -31.76 -25.78 ... -28.81 -30.5\n", " lp (chain, draw) float64 32.9 32.41 32.41 ... 31.39 31.47\n", "Attributes:\n", " created_at: 2023-08-11T18:56:33.561609\n", " arviz_version: 0.15.1\n", " inference_library: stan\n", " inference_library_version: 3.7.0\n", " num_chains: 4\n", " num_samples: 1000\n", " num_thin: 1\n", " num_warmup: 1000\n", " save_warmup: 0\n", " model_name: models/elkgjo5c\n", " program_code: \\n data {\\n int N;\\n vector[...\n", " random_seed: None
<xarray.Dataset>\n", "Dimensions: (chain: 4, draw: 1000, mu_dim_0: 27,\n", " log_lik_dim_0: 27, blooms_std_hat_dim_0: 27)\n", "Coordinates:\n", " * chain (chain) int64 0 1 2 3\n", " * draw (draw) int64 0 1 2 3 4 5 6 ... 994 995 996 997 998 999\n", " * mu_dim_0 (mu_dim_0) int64 0 1 2 3 4 5 6 ... 21 22 23 24 25 26\n", " * log_lik_dim_0 (log_lik_dim_0) int64 0 1 2 3 4 5 ... 22 23 24 25 26\n", " * blooms_std_hat_dim_0 (blooms_std_hat_dim_0) int64 0 1 2 3 4 ... 23 24 25 26\n", "Data variables:\n", " alpha (chain, draw) float64 0.3615 0.3282 ... 0.3922 0.34\n", " beta_w (chain, draw) float64 0.2235 0.2231 ... 0.2044 0.2055\n", " beta_s (chain, draw) float64 -0.08126 -0.07431 ... -0.04058\n", " sigma (chain, draw) float64 0.1818 0.1567 ... 0.1719 0.1567\n", " mu (chain, draw, mu_dim_0) float64 0.2193 ... 0.505\n", " log_lik (chain, draw, log_lik_dim_0) float64 0.05831 ... 0....\n", " blooms_std_hat (chain, draw, blooms_std_hat_dim_0) float64 0.1343 ...\n", "Attributes:\n", " created_at: 2023-08-11T18:56:33.701908\n", " arviz_version: 0.15.1\n", " inference_library: stan\n", " inference_library_version: 3.7.0\n", " num_chains: 4\n", " num_samples: 1000\n", " num_thin: 1\n", " num_warmup: 1000\n", " save_warmup: 0\n", " model_name: models/elkgjo5c\n", " program_code: \\n data {\\n int N;\\n vector[...\n", " random_seed: None
<xarray.Dataset>\n", "Dimensions: (chain: 4, draw: 1000)\n", "Coordinates:\n", " * chain (chain) int64 0 1 2 3\n", " * draw (draw) int64 0 1 2 3 4 5 6 ... 993 994 995 996 997 998 999\n", "Data variables:\n", " lp (chain, draw) float64 32.9 32.41 32.41 ... 31.39 31.47\n", " acceptance_rate (chain, draw) float64 0.9282 0.9287 ... 0.8313 0.9974\n", " step_size (chain, draw) float64 0.804 0.804 0.804 ... 0.6157 0.6157\n", " tree_depth (chain, draw) int64 2 2 2 3 2 1 3 3 2 ... 2 2 3 3 2 2 3 3 3\n", " n_steps (chain, draw) int64 3 3 3 7 3 3 7 7 3 ... 7 7 7 7 3 7 7 7 7\n", " diverging (chain, draw) bool False False False ... False False False\n", " energy (chain, draw) float64 -32.69 -31.76 -25.78 ... -28.81 -30.5\n", "Attributes:\n", " created_at: 2023-08-11T18:56:33.750637\n", " arviz_version: 0.15.1\n", " inference_library: stan\n", " inference_library_version: 3.7.0\n", " num_chains: 4\n", " num_samples: 1000\n", " num_thin: 1\n", " num_warmup: 1000\n", " save_warmup: 0\n", " model_name: models/elkgjo5c\n", " program_code: \\n data {\\n int N;\\n vector[...\n", " random_seed: None
<xarray.Dataset>\n", "Dimensions: (blooms_std_dim_0: 27, water_cent_dim_0: 27,\n", " shade_cent_dim_0: 27)\n", "Coordinates:\n", " * blooms_std_dim_0 (blooms_std_dim_0) int64 0 1 2 3 4 5 ... 21 22 23 24 25 26\n", " * water_cent_dim_0 (water_cent_dim_0) int64 0 1 2 3 4 5 ... 21 22 23 24 25 26\n", " * shade_cent_dim_0 (shade_cent_dim_0) int64 0 1 2 3 4 5 ... 21 22 23 24 25 26\n", "Data variables:\n", " blooms_std (blooms_std_dim_0) float64 0.0 0.0 0.307 ... 0.6894 0.3721\n", " water_cent (water_cent_dim_0) float64 -1.0 -1.0 -1.0 ... 1.0 1.0 1.0\n", " shade_cent (shade_cent_dim_0) float64 -1.0 0.0 1.0 ... -1.0 0.0 1.0\n", "Attributes:\n", " created_at: 2023-08-11T18:56:33.478728\n", " arviz_version: 0.15.1\n", " inference_library: stan\n", " inference_library_version: 3.7.0
\n", " | mean | \n", "sd | \n", "hdi_3% | \n", "hdi_97% | \n", "mcse_mean | \n", "mcse_sd | \n", "ess_bulk | \n", "ess_tail | \n", "r_hat | \n", "
---|---|---|---|---|---|---|---|---|---|
alpha | \n", "0.359 | \n", "0.034 | \n", "0.298 | \n", "0.429 | \n", "0.001 | \n", "0.0 | \n", "3857.0 | \n", "2579.0 | \n", "1.0 | \n", "
beta_w | \n", "0.203 | \n", "0.041 | \n", "0.126 | \n", "0.279 | \n", "0.001 | \n", "0.0 | \n", "4353.0 | \n", "3032.0 | \n", "1.0 | \n", "
beta_s | \n", "-0.112 | \n", "0.041 | \n", "-0.188 | \n", "-0.036 | \n", "0.001 | \n", "0.0 | \n", "4151.0 | \n", "2524.0 | \n", "1.0 | \n", "
<xarray.Dataset>\n", "Dimensions: (chain: 4, draw: 1000, mu_dim_0: 27)\n", "Coordinates:\n", " * chain (chain) int64 0 1 2 3\n", " * draw (draw) int64 0 1 2 3 4 5 6 7 8 ... 992 993 994 995 996 997 998 999\n", " * mu_dim_0 (mu_dim_0) int64 0 1 2 3 4 5 6 7 8 ... 18 19 20 21 22 23 24 25 26\n", "Data variables:\n", " alpha (chain, draw) float64 0.3674 0.3462 0.354 ... 0.3529 0.3582 0.3258\n", " beta_w (chain, draw) float64 0.2106 0.2189 0.1748 ... 0.2551 0.2051\n", " beta_s (chain, draw) float64 -0.1585 -0.1735 ... -0.1014 -0.06658\n", " beta_ws (chain, draw) float64 -0.2024 -0.1429 -0.1649 ... -0.08582 -0.1958\n", " sigma (chain, draw) float64 0.1466 0.1574 0.1383 ... 0.1805 0.1231\n", " mu (chain, draw, mu_dim_0) float64 0.1129 0.1568 ... 0.5309 0.2686\n", "Attributes:\n", " created_at: 2023-08-11T18:56:34.758903\n", " arviz_version: 0.15.1\n", " inference_library: stan\n", " inference_library_version: 3.7.0\n", " num_chains: 4\n", " num_samples: 1000\n", " num_thin: 1\n", " num_warmup: 1000\n", " save_warmup: 0\n", " model_name: models/2akx274x\n", " program_code: \\n data {\\n int N;\\n vector[...\n", " random_seed: None
<xarray.Dataset>\n", "Dimensions: (chain: 4, draw: 1000, blooms_std_hat_dim_0: 27)\n", "Coordinates:\n", " * chain (chain) int64 0 1 2 3\n", " * draw (draw) int64 0 1 2 3 4 5 6 ... 994 995 996 997 998 999\n", " * blooms_std_hat_dim_0 (blooms_std_hat_dim_0) int64 0 1 2 3 4 ... 23 24 25 26\n", "Data variables:\n", " blooms_std_hat (chain, draw, blooms_std_hat_dim_0) float64 0.04633...\n", "Attributes:\n", " created_at: 2023-08-11T18:56:34.902871\n", " arviz_version: 0.15.1\n", " inference_library: stan\n", " inference_library_version: 3.7.0
<xarray.Dataset>\n", "Dimensions: (chain: 4, draw: 1000, log_lik_dim_0: 27)\n", "Coordinates:\n", " * chain (chain) int64 0 1 2 3\n", " * draw (draw) int64 0 1 2 3 4 5 6 7 ... 993 994 995 996 997 998 999\n", " * log_lik_dim_0 (log_lik_dim_0) int64 0 1 2 3 4 5 6 ... 20 21 22 23 24 25 26\n", "Data variables:\n", " log_lik (chain, draw, log_lik_dim_0) float64 0.7045 0.4295 ... 0.8218\n", "Attributes:\n", " created_at: 2023-08-11T18:56:34.858158\n", " arviz_version: 0.15.1\n", " inference_library: stan\n", " inference_library_version: 3.7.0
<xarray.Dataset>\n", "Dimensions: (chain: 4, draw: 1000)\n", "Coordinates:\n", " * chain (chain) int64 0 1 2 3\n", " * draw (draw) int64 0 1 2 3 4 5 6 ... 993 994 995 996 997 998 999\n", "Data variables:\n", " acceptance_rate (chain, draw) float64 0.9824 0.9818 ... 0.9986 0.9993\n", " step_size (chain, draw) float64 0.7264 0.7264 ... 0.6313 0.6313\n", " tree_depth (chain, draw) int64 2 2 3 3 2 2 3 3 2 ... 3 3 2 3 3 2 3 3 3\n", " n_steps (chain, draw) int64 7 3 7 7 3 3 7 7 3 ... 7 7 3 7 7 3 7 7 7\n", " diverging (chain, draw) bool False False False ... False False False\n", " energy (chain, draw) float64 -36.43 -35.68 ... -32.65 -33.83\n", " lp (chain, draw) float64 37.17 37.08 37.86 ... 35.73 36.25\n", "Attributes:\n", " created_at: 2023-08-11T18:56:34.810343\n", " arviz_version: 0.15.1\n", " inference_library: stan\n", " inference_library_version: 3.7.0\n", " num_chains: 4\n", " num_samples: 1000\n", " num_thin: 1\n", " num_warmup: 1000\n", " save_warmup: 0\n", " model_name: models/2akx274x\n", " program_code: \\n data {\\n int N;\\n vector[...\n", " random_seed: None
<xarray.Dataset>\n", "Dimensions: (chain: 4, draw: 1000, mu_dim_0: 27,\n", " log_lik_dim_0: 27, blooms_std_hat_dim_0: 27)\n", "Coordinates:\n", " * chain (chain) int64 0 1 2 3\n", " * draw (draw) int64 0 1 2 3 4 5 6 ... 994 995 996 997 998 999\n", " * mu_dim_0 (mu_dim_0) int64 0 1 2 3 4 5 6 ... 21 22 23 24 25 26\n", " * log_lik_dim_0 (log_lik_dim_0) int64 0 1 2 3 4 5 ... 22 23 24 25 26\n", " * blooms_std_hat_dim_0 (blooms_std_hat_dim_0) int64 0 1 2 3 4 ... 23 24 25 26\n", "Data variables:\n", " alpha (chain, draw) float64 0.3674 0.3462 ... 0.3582 0.3258\n", " beta_w (chain, draw) float64 0.2106 0.2189 ... 0.2551 0.2051\n", " beta_s (chain, draw) float64 -0.1585 -0.1735 ... -0.06658\n", " beta_ws (chain, draw) float64 -0.2024 -0.1429 ... -0.1958\n", " sigma (chain, draw) float64 0.1466 0.1574 ... 0.1805 0.1231\n", " mu (chain, draw, mu_dim_0) float64 0.1129 ... 0.2686\n", " log_lik (chain, draw, log_lik_dim_0) float64 0.7045 ... 0.8218\n", " blooms_std_hat (chain, draw, blooms_std_hat_dim_0) float64 0.04633...\n", "Attributes:\n", " created_at: 2023-08-11T18:56:34.950864\n", " arviz_version: 0.15.1\n", " inference_library: stan\n", " inference_library_version: 3.7.0\n", " num_chains: 4\n", " num_samples: 1000\n", " num_thin: 1\n", " num_warmup: 1000\n", " save_warmup: 0\n", " model_name: models/2akx274x\n", " program_code: \\n data {\\n int N;\\n vector[...\n", " random_seed: None
<xarray.Dataset>\n", "Dimensions: (chain: 4, draw: 1000)\n", "Coordinates:\n", " * chain (chain) int64 0 1 2 3\n", " * draw (draw) int64 0 1 2 3 4 5 6 ... 993 994 995 996 997 998 999\n", "Data variables:\n", " lp (chain, draw) float64 37.17 37.08 37.86 ... 35.73 36.25\n", " acceptance_rate (chain, draw) float64 0.9824 0.9818 ... 0.9986 0.9993\n", " step_size (chain, draw) float64 0.7264 0.7264 ... 0.6313 0.6313\n", " tree_depth (chain, draw) int64 2 2 3 3 2 2 3 3 2 ... 3 3 2 3 3 2 3 3 3\n", " n_steps (chain, draw) int64 7 3 7 7 3 3 7 7 3 ... 7 7 3 7 7 3 7 7 7\n", " diverging (chain, draw) bool False False False ... False False False\n", " energy (chain, draw) float64 -36.43 -35.68 ... -32.65 -33.83\n", "Attributes:\n", " created_at: 2023-08-11T18:56:35.000044\n", " arviz_version: 0.15.1\n", " inference_library: stan\n", " inference_library_version: 3.7.0\n", " num_chains: 4\n", " num_samples: 1000\n", " num_thin: 1\n", " num_warmup: 1000\n", " save_warmup: 0\n", " model_name: models/2akx274x\n", " program_code: \\n data {\\n int N;\\n vector[...\n", " random_seed: None
<xarray.Dataset>\n", "Dimensions: (blooms_std_dim_0: 27, water_cent_dim_0: 27,\n", " shade_cent_dim_0: 27)\n", "Coordinates:\n", " * blooms_std_dim_0 (blooms_std_dim_0) int64 0 1 2 3 4 5 ... 21 22 23 24 25 26\n", " * water_cent_dim_0 (water_cent_dim_0) int64 0 1 2 3 4 5 ... 21 22 23 24 25 26\n", " * shade_cent_dim_0 (shade_cent_dim_0) int64 0 1 2 3 4 5 ... 21 22 23 24 25 26\n", "Data variables:\n", " blooms_std (blooms_std_dim_0) float64 0.0 0.0 0.307 ... 0.6894 0.3721\n", " water_cent (water_cent_dim_0) float64 -1.0 -1.0 -1.0 ... 1.0 1.0 1.0\n", " shade_cent (shade_cent_dim_0) float64 -1.0 0.0 1.0 ... -1.0 0.0 1.0\n", "Attributes:\n", " created_at: 2023-08-11T18:56:34.723805\n", " arviz_version: 0.15.1\n", " inference_library: stan\n", " inference_library_version: 3.7.0
\n", " | mean | \n", "sd | \n", "hdi_3% | \n", "hdi_97% | \n", "mcse_mean | \n", "mcse_sd | \n", "ess_bulk | \n", "ess_tail | \n", "r_hat | \n", "
---|---|---|---|---|---|---|---|---|---|
alpha | \n", "0.358 | \n", "0.029 | \n", "0.301 | \n", "0.411 | \n", "0.000 | \n", "0.0 | \n", "5629.0 | \n", "2730.0 | \n", "1.0 | \n", "
beta_w | \n", "0.206 | \n", "0.034 | \n", "0.145 | \n", "0.275 | \n", "0.000 | \n", "0.0 | \n", "4954.0 | \n", "2852.0 | \n", "1.0 | \n", "
beta_s | \n", "-0.113 | \n", "0.034 | \n", "-0.177 | \n", "-0.051 | \n", "0.000 | \n", "0.0 | \n", "5101.0 | \n", "3033.0 | \n", "1.0 | \n", "
beta_ws | \n", "-0.143 | \n", "0.042 | \n", "-0.220 | \n", "-0.059 | \n", "0.001 | \n", "0.0 | \n", "5011.0 | \n", "3012.0 | \n", "1.0 | \n", "